Human Centred Object Co-Segmentation
نویسندگان
چکیده
Co-segmentation is the automatic extraction of the common semantic regions given a set of images. Different from previous approaches mainly based on object visuals, in this paper, we propose a human centred object co-segmentation approach, which uses the human as another strong evidence. In order to discover the rich internal structure of the objects reflecting their human-object interactions and visual similarities, we propose an unsupervised fully connected CRF auto-encoder incorporating the rich object features and a novel human-object interaction representation. We propose an efficient learning and inference algorithm to allow the full connectivity of the CRF with the auto-encoder, that establishes pairwise relations on all pairs of the object proposals in the dataset. Moreover, the auto-encoder learns the parameters from the data itself rather than supervised learning or manually assigned parameters in the conventional CRF. In the extensive experiments on four datasets, we show that our approach is able to extract the common objects more accurately than the state-of-the-art co-segmentation algorithms.
منابع مشابه
Segmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملبخشبندی معنادار مدل سهبعدی اجسام بر اساس استخراج برجستگیها و هسته جسم
3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...
متن کاملObject Recognition List of Image / Model Edge Correspondences Pose And Distance / Edge Matching Edge Image Edge Segmentation Parameters
In this paper, we propose a system for vision guided autonomous circumnavigation, allowing robots to navigate around objects of arbitrary pose. The system performs knowledge-based object recognition from an intensity image using a canonical viewer-centred model. A path planned from a geometric model then guides the robot in circum-navigating the object. This system can be used in many applicati...
متن کاملDeep-dense Conditional Random Fields for Object Co-segmentation
We address the problem of object co-segmentation in images. Object co-segmentation aims to segment common objects in images and has promising applications in AI agents. We solve it by proposing a co-occurrence map, which measures how likely an image region belongs to an object and also appears in other images. The co-occurrence map of an image is calculated by combining two parts: objectness sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.03774 شماره
صفحات -
تاریخ انتشار 2016